翻訳と辞書
Words near each other
・ Insensitive
・ Insensitive (House)
・ Insensitive (song)
・ Insensitive munition
・ Insensitive nuclei enhanced by polarization transfer
・ Insensitivity to sample size
・ Insensível
・ Insentiraja
・ Insentiraja laxipella
・ INSEP
・ Inseparability
・ Inseparable
・ Inseparable (album)
・ Inseparable (film)
・ Inseparable (song)
Inseparable differential equation
・ Inserra Supermarkets
・ Insert
・ Insert (composites)
・ Insert (effects processing)
・ Insert (filmmaking)
・ Insert (molecular biology)
・ Insert (print advertising)
・ Insert (SQL)
・ Insert card
・ Insert key
・ Insert Knob A in Hole B
・ Insert nut
・ Insert studio
・ Insert Subscriber Data


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Inseparable differential equation : ウィキペディア英語版
Inseparable differential equation

In mathematics, an inseparable differential equation is an ordinary differential equation that cannot be solved by using separation of variables. To solve an inseparable differential equation one can employ a number of other methods, like the Laplace transform, substitution, etc.
==Examples==
Consider the general inseparable equation
: \frac+p(x)y=q(x)
Now we will define a special factorial, ''μ'' as
:\mu = e^
Thus:
:\frac=(e^)\frac (\int p(x)dx)
:\frac=\mu p(x)
From here we can solve the equation using the above definition:
:\mu\frac+\mu p(x)y = \mu q(x)
:\mu\frac+y\frac=\mu q(x)
(using the product rule in reverse)
:\frac(\mu y) = \mu q(x)
:\mu y = \int \mu q(x)dx
Finally, we obtain:
:y=\frac
This can be used to solve most all inseparable equations containing no ''y'' to a degree other than one. For example, solving the inseparable equation:
:\frac=x+y
:\frac-y=x
By arranging in the form required, we obtain:
: p(x)=-1\
: q(x)=x\
:\frac+p(x)y=q(x)
Now all that is necessary is to find the value of ''μ'' to plug into our original equation of y=\frac.
: \mu =e^=e^=e^
Plugging this into the original equation and simplifying gives us our final answer:
: y=\frac}
: y=e^x(-xe^-e^+C)\
: y=Ce^-x-1\
Consider for example the inseparable equation
:2y''+3y'+y=5.\
Let us solve it using the Laplace transform. One has that
: \mathcal\
= s \mathcal\ - f(0)
: \mathcal\
= s^2 \mathcal\ - s f(0) - f'(0)
: \mathcal\left\
= s^n \mathcal\ - s^ f(0) - \cdots - f^(0).
Using the convenience that Laplace transforms follow the rules of linearity, one can solve the above example for ''y'' by performing a Laplace transform on both sides of the differential equation, substituting in the initial values, solving for the transformed function, and then performing an inverse transform.
For the above example, assume initial values are y(0)=0 and y'(0)=0. Then,
: 2(s^2Y-s\cdot 0-0)+3(s Y-0)+Y=\frac.
It follows that
:(2s+1)(s+1)Y=\frac
or
:Y=\frac.
Now one can just take the inverse Laplace transform of ''Y'' to get the solution ''y'' to the original equation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Inseparable differential equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.